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Abstract. We formulate and analyze parallel preconditioners for systems of equations arising from

the p-version finite element methud. Using new theoretical results for polynomial spaces, we prove that

condition number grows as log 2 p, where p is the degree of the polynomial space. Numerical results are
presented showing that the condition number indeed grows very slowly with p.

Key words. p-Version Finite Element Method, Preconditioning, Domain Decomp,.sition, Parallel

Computation, Polynomial Sobolev Inequality, Polynomial Extension Theorems

1. Introduction. In this paper, we study fast parallel preconditioners for systems of

equations arising from the p-version finite element method. The p-version finite element

method [4, 5] achieves increase of precision by increasiiag th- degree of elements rather than

decreasing their size as the h-version.
The finite element method is based on a variational formulation of the original problem:

Find u such that

(1.1) u.EH: a(uv)= f(v)Vv H

where H is a Hilbert space, a(u,v) a(v,u) is a bilinear form defined on H x H and f is a

bounded linear functional defined over H. We assume that a(u,v) satisfies

(1.2) C-'Iu a(u,u) : CuI,, C > 0.

The finite element method consists of choosing a finite dimensional subspace S C H and

posing problem (i.1) on S x S. In what follows the bilinear form a(u, v) is understood to be
on S x S. Selecting basis (shape) functions for S transforms problem (1.1) into the problem

of finding the solution of a system of linear equations

(1.3) Ax= y

where A is a positive definite symmetric matrix.

Our basic approach to solving (1.3) is the preconditioned conjugate gradient method.
We construct a preconditioning form c(u,v) such that

(1.4) mlc(ia) < a(u,u)< m 2c(u,u), 0 <-MI < M 2 ,

holds for any u G S. The form c(u,v) is also chosen so that the problem c(u,v) = g(v) (for
an appropriate linear form g(v) and a chosen set of basis functions) is easier to solve than

the original problem. We show that the relative condition number m 2/Mi grows at most as

fast as log2 (p) for one type of fnite element space, and as plog2 p for another.

The solution of the problem with the bilinear form c(u,v) decomposes into local highly

parallelizable computations and the solution of a relatively small global auxiliary problem.
We study two different methods. In the first (Section 3), the global problem is identical

to the system for p = 1, which presents a very small part of the computational cost for high

p. This method is related to the domain decomposition method by Bramble, Pasciak, and

Schatz ([7 for the h-version. For other pertinent considerations, see Babu.ka, Griebel, atnid
2 Codes
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Pitkiranta 13], Babuska and Elman [1], Babugka, Elman, and Markley (2], and Williams [23];

for nuimerically compuited condition numbers and relation to other methods, see Mandel [16].
For another related method using preconditioning by elements of order higher than one for
three-dimensional elasticity, see Mandel [15].

In the second method (Section 5), the global system has one variable per element,
which correponds to an avarage or the solution on every element. This method was inspired

by the methods of Dryja [11] and Bramble, Pasciak, and Schatz [7] for the h-version in
three dimensions, and an analogous method was developed by Mandel [14, 16, 17] for the
p-version in three dimensional elasticity. Note that the first method leads to a fast growth
of the condition number in the three-dimensional case [16]. The analysis in this paper could
be used also for three-dimensional problmis subject to availability of appropriate extension

theorems.
The paper is organized as follows: For the reasons of clarity of presentation, the methods,

their analysis, and practical results are presented in the first five sections of the paper, while
technical auxiliary results are given only at the end. In Section 2, we introduce some
notation and convenktioais. In Section 3, we formulate and analyze the first preconditioner.
Numerical results for a parallel implementation of this preconditioner are presented in
Section 4. Section 5 contains analysis of the second preconditioner. Sections 6 and 7
contain auxiliary results about Sobolev norm estimates for polynomial spaces, which are oi
separate interest. In Section 6, we prove a discrete Sobolev inequality for polynomials on a
begment, and bound the H 2 norm of a polynomial with zero boundary values in terms of
its H' 1 2 norm. Section 7 contains various results about H' bounded polynomial extensions
of functions defined by polynomials on the the boundary of a triangle or a square. The
theoretical results of the last two sections are related to the results of Bramble, Pasciak and

Schatz [8, 10, 9, 71 and Widlund (21, 221 for the h-version.
We would like to express our appieciation of the interest and comments of Professor

Olof Widlund relating to the results of this paper.

2. Notation, Conventions, and Preliminaries. Let R2 be two dimensional
Euclidean space and

T7 {( C g?,) 2 1[0 < 1< VK3( + 1),-1 < 4 <0, or0 < 7 < v"3(1 - 0),0 < < 1}

be the reference square and triangle as shown in figures 2.1 and 2.2, respectively. We shall

use the generic notation K for both Q and T when the distinction is unimportant.
The image of Q (resp. T) under the mapping FQ (resp. F7), FQ Q -4 Q = Fv(Q)

(resp. F1 : T -, T = F(T)) is denoted by Q (resp. T). Similarly to before we use the
notation K for both Q and T when the distinction is unimportant.

We shall assume that the mapping FQ is a bijection and that

(.1,FQ,'Q < CIhQ, IF&'I,,,,Q :_ C2 hq',
(2.1) <J,, - C 3 h2, 1JI 1.'.o.oo,.Q < Ch- 2
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FIG. 2.1. Reference square

V1 V3

Ti, Q ii

V1  V4 2

where Jp, is the Jacobian of FQ, Jr [ is the Jacobian of F¢ , and

IFQlk,, ,Q = sup I~
CnEQ
Iil=k

Similar assumptions are made about Ft. We do not need to assume anything about h ur

hr, they are simply numbers proportional to the diameter of K.

Let Q C R2 be a curvilinear polygon, that is, a domain which is bounded by a simple
curve consisting of a finite number of smooth arcs with the end points at the vertices of f-.

Further, let K be a decomposition of Q into a finite number of curvilinear quadrilaterals or

triangles such that

a) n U k, and for all decompositions under consideration the constants C, in (2.1)
KEK

are the same, that is the mappings are uniformly bounded.

b) The intersection K, n/ki, i $ j is either a common vertex or common side, or the
intersection is empty.

c) If K fln j= ,,j, -,,j being the common side, then the mappings Fk' and FW-

coincide on 7y,, in the usual sense of the finite element method.

d) The vertices of fQ coincide with the vertices of some K.

In this paper C denotes a generic constant which does not depend on p or any of the

functions involved, but which may take different values in different places, even in the same

formula.

Let us now define the finite element spaces on S and T. By P,2(Q), p 2 1, we denote

the set of all polynomials on Q which are of degree at most p separately in the variables

4



FIG. 2.2. Reference triangle

V:j

72

V 1 i3 V 2

and 77. This space is usually called the space of tensor product polynomials. By PP(Q), we
denote the span of the union of set of all polynomials of (total) degree at most < p with the
polynomials which are of degree at most p in , degree 1 in q and of degree 1 in 4, degree
at most p in q7. This space coincides with the space of the serendipity element 1241. The
space P (Q) is the minimal space which includes all polynomials of (total) degree p and has
! 0 is f, lr-c . .. t : L farto - j r ' A,  ~ : " Yr e -z! shape furirf;'r. Tl'-;

guarantees good approximation properties. In t31, the set F'A(Q) is denoted by Qp and the

set by Q. By P(T) we denote the set of all polynomials of (total) degree at most
p, and, for an interval I, lPp(I) is the set of all polynomials of degree at most p on I. The

generic notation 1,p(k) will be used for Ppi(k).
We shall assume that the basis (shape) functions of Vp((k) can be divided into the

following three sets:
a) The set I of internal shape functions. These shape functions are zero on 1/k.

b) The sets F,, i = 1,...,n (n = 3 for k = T and n = 4 fork = ) of side shape
functions. If $i is a side of K then a side shape function associated with ji is zero
on a9k \ i,. F, is the set of all side shape functions associated with ji.

c) The sets A/, i = 1,... ,n of the nodal shape functions. For a scalar problem, the
set A, contains one shape function which has value one at ,, and is zerf on the

opposite side(s).
The spans of ", F, , M, will be denoted by i, I2, A,. The above definition does not imply

a unique set of shape functions. There are many different ways to create shape functions
satisfying the above conditions and spanning the same space. We refer to (3, 17] for details.

Let M C R' be a domain. Then by H(M), k > 0 an integer, we denote the standard
Sobolev space on M, and by 11" Ilk, A (resp. I" Ik,AI) the norm (resp. seminorm). On

5



I = (a,b) we also introduce the Sobolev space with fractional index by interpolation by

the K-mfthod [6], H'/ 2 (I) = (H"(I),H'(I)),/2 with the norm - 11,/2., and the space

,, = (H"(I),,,(I)),12 with the norm ,011-11,,/2I1. Further, by H'/ 2 (,K) we denote the

space of all traces of ,, G H'(K) and lull1,/2,(d =i 1"f IlVlI,.K where the infimum is taken over

all v - HI(K) for which v = u on OK. We have

HU11/21 b b (X)- UY) 2 \xd 1/2

and

AItIU12 ~ IIUIV12 , b u 2 1(X) b U2(,+ bI -1(2 - b)'
,llf/2.,1 !*/2 1 + 2 ( - dx) + 2 x) -gdx --

2f ±) b (x - a)xb)

wlherz . denotes the usual equivalence of norms. Let 7, be the sides of K, i = 1, 2, 3 (resp.

i = 1,2,3,4) and v, be the vertices of K such that v, is common for "Yj(z) and Yt(j). Then it
is well known that

nI nI (U i)t _ Uli()2

II',ll,/2aK -:t E lu Hl2/2,,, +t dt
I i= 1 iti

where the u1 (i) denote the restriction of u to 7 1(i) and t is the distance to vi. It is also well

known that if u E H'/ 2(Ok) then there exists U E H'(k) such that

In this paper we shall be interested in the following model problem: Find u such that

(2.2) -Au=f, in f, u=0on0' , =f 2 on O2 Q
O9n

with 1f2Ua 2f12 = aq. We shall assume that (9'Q $ 0 and a'Q and ?2f2 consist of entire
sides of Oa. Note that the assumption that O'S $ 0 is only for the sake of simplicity and is

not essential.
We shall understand problem (2.2) in the usual weak form. To this end let

H {u E H'(Q) : u = 0 on i'a}

and

a(u, v) j ]Vu -Vvdxzdy,

be the bilinear form defined on H x H. Further let

v)= J fIvdxdy + J f2vds

6



be a bounded linear functional on H. Then by the weak solution of (2.2) we mean u, such
that

(2.3) U, G 1: a(uo,v) = g(v) Vv E H.

The solution u, exists and is unique.
The finite element solution is defined in the usual way. Let C be the partition of fQ and

VA, = fu E H: UIK o FK EV§,(k), K E K}.

Then the finite element solution is a function UE such that

(2.4) UF V C VA : a(UFh.,v) = g(v), Vv E V&

The solution of (2.4) exists and is unique. By integration over the elements we have

(2.5) a(u,v) = >3 aK(uK,v K), aK(u,v) J VU VVK dx dy.
KEK K

where UK = ujK_ and vK = vIK are the restrictions of u and v to K. Note that the bilinear
forms aK(u,v) are positive semidefinite.

For any K, E C we also have

aK(U,=) aK(U ,K)

Irc " , ,(, I. - F, , , ,i. a:d a, is dcefhed on the master
element k.

The form aK is different for every K E K but

aK( IK )  K,

where

(2.6) 4 (IiK,t 2 K) J jVK 2 dqd

k

and because of (2.1) the equivalence constants are independent of K,. Hence we do not need,
at least for.our purposes, to distinguish between the bilirear forms aK and a. Further, we
do not need to make any distinction between the basis (shape) functions on K and /, or in
general between K and k.

3. Preconditioning by Linear Elements. For any u E V. and K C K we have the
decomposition

n n

(3.1) uK UK±+UK u K

7



where u h = UlK, uv, , G iu .  F1 , ut G -1, and n = 4 for the rectangle, n = 3 for

the triangle. (As mentioned in section 2 we do not distinguish between K and K). The
partition (3.1) is unique. Define

(3.2) c(U,v) = k (UK,v K),
KEK

where
(33 C~K, K ) K, K j,- ) + VK (0', vj).

(33=t uV a v v,,+ aK(u'~~ + ak.
j=t t

The main goal of this section is to analyze the spectral equivalence of the forms c(u,v) and
a(u, v).

LEMMA 3.1. If

maK(LZL) _ CK(UU) < m 2aK(UK, ) VK E K VK e VFCK),

where m, and m 2 are independent of K C K and u, then

mIa(u, u) < c(u,u) < ,moa(u,u), Vu E V.

Proof. Sum over all elements K E K. 0
The following lemma shows that to bound the condition number, it is enough to bound

the energy of the term5 of the decomposition (0.1).
LrMN1MA 3.2. 1 tr71 , U _ ) ILL

(3.4) 1 u.K.,,K < b, uK 1K)
I V I ITI
=I

(3.5. 12,t K < b",[u K  ",2K 5 -- 1 . . n,(3-5) lug I '
(2u1 IX. <  b:il u l  LI . ,J = 1 . . n

Then it holds that

13.,,) ~ K I,,.KuK  < CK (UK,UK )  <5 m2aK(u K  u K )

wi th M2/M, < (n + 2)(b, + nb2 + b,).

Proof. We have from the Cauchy-Schwarz inequality

a== 1 1 =1 s=1

UK" K" + ( K (u., u K \(n + 2.) a K E ,,v, E u, a,,(,.,,,, + aK(,- .i

=(n + 2)C-(UKIUK),



so m, > 1/(n +2). Further, using (3.4)-(3.6), we obtain cK(uK,u ) < (b, + nb'++b:,)!u I
11

Let us now b",nd the asymptotic behavior as p -- oc of the constants b, for some

particular cas,- i the decomposition (3.1) gener.Ied by specific spaces of shape functions.

LEMM ' .,.3. Let VK,(K) = (T) or 'P,2(Q), ., be the set of linear functions when

K T t and bilinear when K Q, and for all i 1,... n,

(3.8) a(u,v) = o Vu F', ' -,

where a ts defined by (2.6). Then (3.4)-(3.6) hold with

b, < C(I + log' p),

where C is independent of p.

Proof. Let u G 1,,(k) and i2 =u + A, A E . Then Z-= uv.1  (Z,= 7L, ) + A

and fi,, us,, uii = ul. Because the seminorm I" It and the norm in the factorspace

H'(K)/P,(K) are equivalent, we may assume that

llull,,k <_ Clu,.

Because IIuII,/ 2 . < ClIullK, applying Theorem 6.2 we obtain

(3.9) lIIu,.jk (7(1 + logp)u. ,.

Thus we obtain b, < C(1 -I logp) and we have for ul = u - u,~ ,,4 that

Jlu+!. CIl t- log p)u, +i/.

and using Theorem 6.2 once more we obtain

< (,( + log p)II,,f .,,

Hence by Theorem 6.6,

III 11/2,i, < C(1 + log2 p)IIUi,.

for all sides - j,. By Theorem 7.4 if = T and by Theorem 7.5 if K Q there exists

S. e r, + I such that f2,,, = ul on j. and

II, .l, k <_ Coll-illt/2,, < ((1 + log2 p)Il, K.

From condition (3.8) we conclude that there also exists usa E f'. such that

IIUsjik < C(1I + log2 p)lu1,, I

and u.., = ul on j,. Therefore we obtain b2 < C(1 + log2 V) . Obviously uti= - tu,.,
and hence b3 < C(1 + log p) as well. [

9



LEMMA 3.4. Let I',(K) = 'P2(Q) and let all other assumptions of Lemma 3.3 hold.
Then (3.4)-(3.6) hold with b, < Cp 2 (l + log 2 p).

Proof. The proof ic analogous to that above using Theorem 7.6 instead of Theorem 7.5.

We are now ready for the main result of this section.
THEOREM 3.5. Let the assumptions of Lemmas 3.3 and 3.4 hold. Then

mia(uu) c(U,U) < m 2a(u,u)

holds for any u E Vk with

(3.10) m 2 /m, < C(1 + log 2 p)

if V',(K) =' 17(T) or V(K) = P,(Q), K E I and

(3.11) m 2/mI < Cp2(1 + log p)

if V;,(K) P 'p2(Q) for some K E 1. The constants C in (3.10) and (3.11) are independent
of p and IC, and the bound (3.10) cannot be asymptotically improved.

Proof. Combining Lemmas 3.1 - 3.4, we obtain (3.10) and (3.11). To show that the
bound (3.10) cannot be asymptotically improved, we take the function function v from the
second part of the proof of Theorem 6.2, map it on each side of K and extend to a function
u with minimal energy in 1V,(K). Then

lt,K - 10gP,

but it holds for the !i(o components that

S olIV1,/ 2,(,,,) log3p

Conscquently, m 2 > (1/C)log2 p; but it is easy to see that m, < 1. 0
Realizing that the energy of the nodal components was bounded by a C log p, the above

proof also shows that the growth of the condition number as p - oo is in this case primarily
due to the coupling between adjacent sides (and not, for example, between the nodal and
side shape functions).

Let us note that we conjecture that (3.11) is too pessimistic, and that in fact the result
should be the same as (3.10). This conjecture is supported by numerical experiments.

The solution operator for the problem

(3.12) u E vk:: c(u, v) = g(v), Vv E V

serves now as the preconditioner. It is easy to see that problem (3.12) has a unique solution,
since c(u,u) is symmetric and positive definite.

Using this preconditioner we can apply the conjugate gradient method. One such
modified preconditioner, which is very natural for existing p-version finite element programs
such as PROBE [20], will be studied in the next section. Problem (3.12) is obviously much
more easily solved than the original problem ,nd the procedure is highly parallelizable.

10



4. Implementational Aspect and Numerical Experiments. Theorem 3.5 is the
basis for various versions of the preconditioned conjugate gradient method which can he
asymptotically equivalent yet different in practical performance. For various aspects we
refer to [2, 1, 3, 14, 17, 16, 23]. The method has the tollowing essential steps:

a) Construction of the standard st of shape functions, i.e., the sets i, F,, -. Here
various practical considerations play an important role, for example the hierarchical
character of the functions. For the discussion of the design of A., F,, and 1, we
refer to [31-

b) Transformation of the sets F, of the sbape tunctions to a new set Fr which satisfies
(3.8), while preserving the span of all basis functions. This transformation can
be based on the standard form a(af' ,1&K) (and hence made only once on the
reference element) or on the actual form aK(tK , vK) made separately (in parallel)
on every element. The transformation can be made by elimination (condensation)
of the internal shape furctions and in the latter case decreases the size of the
global stiffness matrix on which we iterate. The transformed shape functions are
scaled (normalized) and also orthonormalized in F*. Then the stiffness matrix
corresponding to the preconditioning form c(u,v) is diagonal except for a diagonal
block corresponding to p = 1, and the iterations are very simple. It is also possible
to choose basis functions on the reference element so that this transformation can
be avoided, see (17]. For high p the transformation is relatively expensive when the
actual form a(u,v) is used but is fully parallel on the element level. Furthermore,
the transformation approach is natural for an existing p-version finite element code
such as PROBE.

c) or p - i precou 0io1 ing and conjugatc gradicnt iterationeithr tue giob&l stiifncss
matrix cai be a zembled or the iterations can be made using local stiffness matrices.
The p = I pr-conditioiing is relatively inexpensive for higher p.

Various other aspects play an important role in the- practical performance of the
algorithm. We shall not enter into details here but shall display a numerical example based
on one of the versions of the method and implemented on All. -it FX/8 ' . Let us consider
problem (2.2) on 0 = (-1, 1) x (-1, 1) with the partition K into n x n identical squares.
We shall further assume that 02f2 :: 012. The global stiffness matrix is then singular with a
simple zero eigenvalue and a constant eigenfunction.

Let us first consider the case where the set P (Q) is used on every element of the
partition. This set is used in the program PROBE [5, 201.

1) The one element sets N', of nodal functions, each consisting of the the usual bilinear
function N,, defined by

N, (,)= - )(1 -7),

N(,7)= I I+ -)( 7),
4

s Computational support was provided by the Advanced Computing Research Facility at the Argonne
National Laboratory.

II



:j(,7) ( + 01+ )
4
1

Nj( ,7) = I(1 - )(1 + 77).
4

2) The sets r, of the side shape functions. There are p - 1 shape functions associated
with every side -y,,i = 1,2,3,4. These are defined as

1 77 (1 - )( (),i 12

2
N 2'(,/ =77 ( + )41.(r7), i , ,., -1

2

2

where

e 2i ~- 1
-I

and P (t) is the Legendre polynomial of degree j. The term (-1)' is needed in NJ"

and N,(' ! to obtain invariance with respect to rotation of coordinates.
3) The set - of the internal shape functions. For p > 4 there are (p - 2)(p - 3)/2

internal shape functions defined as

(4.1) !V(j ,r) (- )(1- 77')P( )Pj(77), 0<(t + j) :Sp -4.

For example, if p = 8 there are 47 shape functions, consisting of 4 nodal, 28 side and 15
internal shape functions.

This set of shape functions is hierarchical, which is important in practical considerations.
In the case of the set P,(Q) the set -I is expanded so that it contains the functions from

(4.1) for all izj, 0 < ij < p - 2. See [2, 3] for details.
In our numerical experiment, we use the following approach:

1) Using the above shape functions we create the local stiffness matrix. We shall
simulate the general case where the local stiffness maL;ices are different and compute
them separately in parallel. We further consider two variants:

a) Preconditioning by elimination of internal shape functions and diagonal scaling
of the resulting reduced matrix. Because this reduced matrix is in fact the
stiffness matrix with original nodal functions and new side shape functions
satisfying (3.8), this corresponds to the preconditioner (3.3) with form a in the
second term replaced by the form corresponding to the diagonal of the reduced
matrix. To implement (3.3) completely, one can orthogonalize the new side
shape functions in the energy inner product, but the condition number would
be further reduced only slightly [3, 16].

12



TABLE 4.1

Number of Zteratzons to reduce the error in the energy norm by factor of 10 - for n = 2 (4 elements).

Set P, (Q) Set M(Q)
Preconditioning Preconditioning
by elimination No elimination by elimination

of internal of internal
shape functions shape functions

2 12 16 8 8
4 17 31 13 19

6 20 41 ,6 26

8 22 51 18 32
10 24 59 19 39

12 26 66 20 45

14 27 74 21 50
16 29 79 22 54

b) No elimination is made, the interior shape functions are scaled to obtain ones

on the diagonal. This corresponds to the definition of the decomposition from
original shape functions, and using the diagonal forms obtained from these
shape functions to replace a in (3.3) for sides and interiors.

2) The conjugate gradient method is used with preconditioning (3.3) without
assembling the global stiffness matrix. Except for the solution of the problem with

p = 1 in every iteration, all computations are performed element by element. To
measure the convergence, we shall only consider the case with zero exact solution
and n'-7,ro random rfartinr vecr. V-- hp've run otir tests for the case lP = 0,
which leads to singuiar stiffness matrix with constant eigenfuction. The process

was thus adapted by including orthogonal projections onto the complement of

the nullspace. Direct solution of the problem for p = 1 was done by band LU
decomposition and elimination of internal basis functions by full matrix Choleski
decomposition. The modified side shape functions have not been orthogonalized.

Table 4.1 shows the number of iterations required to reduce the original error (measured
in the energy norm) by a factor of 10'. We consider the case n = 2 (i.e. 4 elements). The
results of the previous section indicate that the number of iterations should grow at most

as logp in the case of the set P,'(Q) and at most as plogp for the case P'(Q), with the

conjecture that the growth is only log p. In Fig. 4.1, we show the relation between p and the
number of iterations in semilog scale. We see that the case P3(Q) needs fewer iterations than

"P2(Q), although the proof is still open. In both cases the growth is log p for p in practical
ranges. (The growth logp would lead to a straight line in Figure 4.1). Fig. 4.2 shows, in

loglog scale, the growth of the number of iterations in the case when no preconditioning
by elimination is made. We see that the number of iterations grows about as p3 / 2 . This is

related to the growth of the condition number of the local stiffness matrix as O(p').
To compare the practical potential of both varians, we have to realize that the

number of iterations is not solely essential for the effectiveness of the method, because

13



TABLE 4.2

Timing in seconds on A liant FX/8 using 4 processors for n = 2 (4 elements)

Set p2(Q) Set P3 (q)
Preconditioning Preconditioning
by elimination No elimination by elimination No elimination

of internal of internal
shape functions shape functions
0.465 0.576 0.294 0.293

2 0.018 0.011 0.010 0.010
0.433 0.548 0.270 0.267

0.673 1.150 0.463 0.671
4 0.051 0.040 0.020 0.019

0.610 1.098 0.436 0.639
0.969 1.791 0.743 1.131

6 0.248 0.127 0.063 0.052
0.781 1.651 0.633 1.062

1.762 3.186 0.852 1.403
8 0.946 0.327 0.206 0.116

0.805 2.345 0.663 1.274
3.976 6.237 1.280 2.142

10 2.857 0.729 0.556 0.249
1.092 5.483 0.709 1.879

9.263 12.498 2.173 3.344

12 7.353 1.420 1.328 0.468

1.864 11.032 0.829 2.856
20.368 24.498 3.971 5.500

14 17.088 2.535 2.866 0.820
3.200 21.875 1.078 4.655

41.082 42.245 7.250 9.062
16 35.516 4.201 5.679 1.346

5.414 37.893 1.534 7.676

Total time
Legend: Local stiffness time

Conjugate gradients time
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TAnrE 4.3
Number of iterations and timing in seconds on Atliant with 8 processors for the set 7'(Q)

p n=4 n=5 n=6 n=7 n=8 n= 10
10 11 10 10 10 10
0.313 0.473 0.455 0.659 0.560 0.754
0.032 0.035 0.125 0.252 0.040 0.146
0.263 0.401 0.298 0.368 0.471 0.531

14 14 14 14 14 14
0.458 0.634 0.726 0.972 0.990 1.289
0.042 0.071 0.198 0.322 0.158 0.307
0.399 0.537 0.498 0.613 0.753 0.896

16 16 16 16 16 16

6 0.643 0.953 1.112 1.532 1.614 2.625
0.133 0.255 0.334 0.504 0.506 0.844
0.491 0.666 0.698 0.924 1.049 1.662

17 17 17 17 17 17
1.224 1.740 2.192 2.844 3.211 5.110
0.429 0.824 1.106 1.538 1.650 2.732
0.769 0.877 1.044 1.260 1.486 2.265

19 19 19 19 19 19
2.191 3.740 4.781 6.592 7.589 11.664
1.138 2.268 2.913 4.064 4.573 7.412
1.027 1.431 1.826 2.468 2.933 4.140

21 21 21 21 20 20

4.536 8.406 10.788 15.431 17.701 28.187
2.747 5.433 6.876 9.653 10.930 17.742
1.746 2.895 3.832 5.693 6.632 10.286

22 22 22 22 22 22
10.036 17.871 22.824 31.812 39.008 61.259
5.998 11.854 14.872 20.779 23.669 38.391
3.913 5.845 7.702 -40.710 14.857 22.123

23 23 23 24 23 23
18.902 34.623 44.622 61.470 74.892 120.481
S11.931 23.746 29.920 41.750 47.458 77.899
6.761 10.545 14.232 19.135 26.547 41.193

Number of iterations
Total timeLegend: Local stiffness time

Conjugate gradient time
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FIG. 4. 1. Number of iterations Lfter elimination of interior
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Full line is the number oL" iterations for the space V2, dashed line for the space P'.

the preconditioning by elimination of interior is expensive. In the table 4.2 we show the
timing on Alliant FX/8 with 4 processors (i.e., one per element). We report

a) the total time,
b) the time for the local stiffness matrix computations, elimination and scaling,
c) the time for the conjugate gradient method.

From table 4.2, we clearly see the timing of the main parts of the computation. In
the case where no elimination is made, the local stiffness matrix time consists only of the
matrix construction and scaling, while in the case of elimination it also includes the time
for elimination which, for high p, is the main part of the total time. Comparing these times
we see that the construction of the local stiffness matrix is not overly expensive. Further
we see that the use of the set P.(Q) is clearly superior to that of PP2(Q). The set p2(Q)

will be more accurate than VP'(Q) for the same p, but P,2(Q) has more basis functions and a
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FIG. 4.2. Number of iterations without elimination of interior
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greater increase in accuracy will be obtained by increasing p in P3(Q). (For example p = 11

for P,,(Q) is comparable with p = 16 for P-(Q).)So far we have presented the data for the case n = 2 (i.e. 4 elements). Table 4.3 reports

the number of iterations as functions of p and n for the set Pt(Q) and the timing as in table
4.2. We see that the number of iterations is independent of n and the growth with p is the
same as in table 4.1. We report here condensed data only; for a detailed breakdown of the
timing and an exact description of the tests, we refer to [2, 23]. Here we mention only that
the total time does not equal to the sum of local stiffness time and CG time. This difference
includes the time for the LU decomposition for p = 1 as well as various communications and
bookkeeping operations. Note in Table 4.3 that the local stiffness time for large p is almost
proportional to the number of elements (see, e.g. p = 16, n = 4,8), while for low p other
factors prevail. Because in our model problem the local stiffness matrices are identical, we
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could compute the local stiffness matrices only once by each processor. The local stiffness
time would then decrease by the factor n'/8. The LU decomposition for p = I is of order
3% of the total time for high p and 10% of total time for low p. Finally, we mention that
for p = 16 and n = 10, the size of the global stiffness matrix (number of degrees of freedom)
was 12521.

We conclude this section with several remarks based on detailed computational results
as reported in [23]. The method is well parallelizable and the observed speedup is very
high. However, the speedup is different for various parts of the procedure. The local
stiffness matrix -omputation is conpletely independent and thus the speedup is more than
95%. The conjugate gradient iterations, although parallelizable element by element, require
considerable communication between elements and thus the speedup is smaller. The entire
computation has speedup of order at least 85%, depending on the number of elements and
the degree p.

We expect that that the speed up will be essentially the same for parallel computers
with distributed memory because of good load balancing. The stated timings also allow
us to roughly estimate the times for other variations of the approach, assuming that the
same number of iterations are required. The stopping criterion 10' is realistic because
the discretization error, measured in the energy norm, is, in practice, larger than 1% and
hence an additional error of 0.01% is fully acceptable. The reporid tintes ate for elements
which are not distorted. We can expect that strong distortion of the elements will strongly
influence the number of iterations required; see Mandel [17, 16) for related condition numbers
in three dimensions and curved elements.

There are many other obvious versions and variations of the implementation. We have
shown one possibility, which can be easily implemented as a part of an existing p-version
code.

5. Preconditioning by an Auxiliary System. The method of Section 3 cannot be
applied successfully to three-dimensional problems because the values of Iu jI,,K cannot be
bounded by a power of logp times IJI 1,K independently of u as p -+ oo. We shall introduce
another preconditioning system which has been successfully applied in three dimensions, see
Mandel [17]. We shall analyze the analogous two dimensional procedure. In order to analyze
the three-dimensional procedure, we would need the appropriate extension theorems in three
diniensions; the proof is then completely analogous. The method we obtain is related to
that of Bramble, Pasciak, and Schatz [7] for the h-version.

For u E V& and K E K we write as before in (3.1),

(5.1)
(5-)- U ,i + U, +  U'

i=1 i=l

where u , , E ., u F G ,, and u< E. The definitions of the spaces ,,, F,,and I will be
different here. In Section 3, it was essential that the span of V,,, i = 1,... ,n, contains the
constant functions. This ib no longer required here; instead, we tako '- of the constant
component separately. To this end, let A be the space of functions which are constant on
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each K E IC. Then on (1k4 x A) x (1/. x A), we define the form

d(u, A;v, IL) >3 dA(uK, A K:VK' )
KEk

where

dK (UK , A K ; V K, K ) = d'K(u - A K",V3K A-/),
-

and

K K (UKvKj) + UV)
dj (u,v) ZaK(uyj,vvj) + aK J S,., ,+aK(UIvzI

j~l j=1

The solution operator for the problem

(5.2) u C- V: d(u,A;vp) =g(v), Vv E Vi, IL E A

will now, analogously to (3.8), define the preconditioner (using u only). Existence of the

solution operator follows easily from the observation that d(u, A; u, A) > 0 with equality only

if u = 0 and A = 0. The system (5.2) obviously splits into

(5.3) d (UK - AK, 1) = 0

and

(5.4) > d.(u' - AK, V) = g(v), Vv E VK
KEK

See [17] for more details about the solution of (5.3) and (5.4). Now we have, analogously to

Lemma 3.1,

LEMMA 5.1. If

mjaK(uKU ) < dK (UKAK(UK); U K, AK(uK)) < m 2aK(UK,uK)

where AK(uK) is defined by (5.3) and m, and m2 are independent of K E K and u, then

ma(u, u) _ d(u, A(u);u, A(u)) !_ m 2a(u, u).

Further we have

LEMMA 5.2. Assume that for any uK E VK such that f uKdxdy = 0, it holds that
K

(5.5) K12 IK 12 IK12 I K IK

(5.5) IUV I.K < blIuKIK, UjI,,K < b2 Iu IK, IXu < b:;IuK

Then

(5.6) mjaK(uK,u) _ dK (uKA(uK);UK,A(UK)) _ m 2aA(UK,UK)



holds for all uK G V< with T/m, < (2n + 1)(nbi + nb2 + b).

Proof. -'e proof is the same as for Lemma 3.2 observing that for any A,

a(UK _A, U _ A) = aK(UK,U)

and using the fact that all the terms in (5.6) are invariant with respect to the addition of a

constant to u. 0

Let us now determine the constants b, for some particular choices of the shape functions.

LEMMA 5.3. Let
a) v (k) = -(T, or -P' (Q)

b) For any u E AM, i I,...,n, and all sides j, adjacent to the vertex fi,

(5.7) d(,v) = 0 ,VV i UF,

c) For i = 1,...,n,

(5.8) a(u,v) = 0 Vu GI Vv e

Thti (5.5) holds with

b, < C(I +log 2 p), i= 1,2,3,

where C is independent of p.

Proof. First consider the case when K = T is the reference triangle with the vertices

i,,z = 1, 2, 3 and sides "i, i = 1, 2, 3 opposite tof', (see Fig 2.2). Let u C- V,(k), f u d d 0;
k

then

IItIIk - Cuflk

By Theorem 7.7 and the trace theorem, there exists a functi,,n f, E V1,(k) such that f, = u

on j, and f, = 0 at i3,. Then f,,, = U- f, is zero at j, and u(v,) = v,(v,). Then from (5.7)

we have u ,,< < IK,.I,k and hence

(5.9) IUV,ilk CIUIk,

giving b, < C.

Now for u, u - E=, u,,,, we have Ilullik < CfIulj,,k' and using Theorem 6.5, we

get

,,IUI 112, 2., < c(1 + log2 p)JIIi1 .

The rest of the proof for this case is analogous to that of Lemma 3.3.

Let us now consider the case K = Q and the vertex i't (see Figure 2.1). By Corollary 6.3
anu T'Icore-, 7.9, there is a function v E P' stch that vLj, = v!i, = 0, v(t,) = u(u,), and

IIvIlIk Cl:UllIk,
20



Now we may conclude using (5.7) that

and hence b, < C in (5.5). The above estimate obviously holds for u,,,, i = 2,3,4 as well.
The proof of the estimate of b2 and b3 goes exactly as in in the first case using extensions

by Theorem 7.5. 0
We have the following bound for the tensor product space.
LEMMA 5.4. Let V(Q) =P(Q) and (5.7) and (5.8) hold. Then Ib, I < Cp2(1 +log 2 p).

Proof. The proof is same as that of Lemma 5.6 for k= Q using the extension by
Theorem 7.6 rather than by Theorem 7.5. 0

We are now ready for the main result of this section.
THEOREM 5.5. Let the assumptions of Lemmas 5.2 and 5.4 hold. Then

ma(uu) d(u, A(u);u,A(u)) < M2a(uu)

with

(5.10) m 2 /m C(1 + log 2p)

if V1',(-K) = 'P(-tT) or Vp(-YK) = P'(tQ) for all Kg E K and

(5.11) m 2/m, Cp 2 (1 + og2 p)

if vp(k) = P-'(Q) for some K E K. The constant C in (5.10) and (5.11) is independent Of
p and K and the bound (5.10) cannot be asymptczically improved.

Proof Combining Lemmas 5.1-5.4 we obtain (5.10) and (5.11). The proof that (5.10)
is sharp is same as in the proof of Theorem 3.5. 0

We conjecture as in Section 3 that the estimate (5.11) is pessimistic and that it can be
in fact replaced by (5.10).

6. Polynomial Subspaces of H /2 . In this section, we give several results for spaces
of polynomials on a segment, which are of interest in themselves. First we prove a discrete
Sobolev inequality for the H' /2 norm, bounding the pointwise value of a polynomial in
terms of its H 1 2 norms. Then we bound the .. 2 norm of a polynomial which is zero on
the endpoints in terms of its H1'/2 norm. In what follows we have K = Q or K = T, but we
use the coordinates x, y instead of , q.

We begin with a lemma which will allow us to consider trigonometric polynomials instead.
of algebraic ones. Let I = (-1, +1) and I* = (0, r).

LEMMA 6.1. Define the mapping 'k by

(6.1) u E H1/ 2(I) - 1u = v, v(V) = u(cos V), o E I'.

Then *I is a linear homeomorphism between H/(I) and H'/ 2(I*).
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If u E 'P,,(I) and v 'J'(u), then

P

(6.2) v(p) = bk cos kW
k=()

and
P

(6.3) IIv(I1/2,1. - b (k + 1).
k=()

Proof Define

QI xI,

- (x,Y), x + iy = cos( + i),
z = P(p.

Because the cosine is a conformal mapping, the Cauchy-Riemann conditions hold,

X"; = W X( -

and we have the Jacobian of (P,

J + C0, V( o, () E Q,

because - sin( p + i() = cos'(W + iC) x,, + iy;. $ 0 for all (W, () E Q2. Now let u be a smooth

function defined on Z. Define

41(u) - v ,() = 1( ( , ).

Then v is defined on Q. From the chain rule and Cauchy-Riemann conditions,

v, = u'rX- + UyY., V( = uZXC + UyYC = -Uiy" + uuxrp

and by a simple computation,

2 (U + U)(V + (122 ) 2 2

By substitution,

IuI'Iz =f(U~ 2U 2) dxdy =f(u~ 2 +U2)J dcp d( f (v2 + V') dp d( Iv~n
z

Finally, from

[U2  f JIU1 ddy f Ivf 2jd d
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and the equivalence of norms

IIz11,o (izi.S + Jwiz12dodC d( z c H'(Q),

which holds for any function wv E L-(Q) such that w > 0 and fil wdpd( > 0, it follows that

(6.4) IUIIP(u)II1, _ Itufl,Z <_ ClI'l'(u)II,,0,

with C independent on u. By continuity, (6.4) holds for all u C H'(Z).

Now if u e H' 12(I), we may extend u to u E H'(Z) so that Ilul,.z CiluIll,/,1 , and it
follows from (6.4) and the trace theorem that

II '(u)jIl/2,I- < CP'(U)l IJ < CIlIUII,z < CIIuII1/2,..

The inverse inequality follows similarly using I-' in place of T/.
To prove (6.2), it is sufficient to note that we have cos' W = "=,, ak cos ns for suitable

ak. Equation (6.3) follows by direct evaluation of Sobolev norms of a Fourier series and by
interpolation. U

The following theorem is a discrete Sobolev inequality for polynomial spaces.
THEOREM 6.2. Let I (-1, +1), u E 'Pp(I), and x C I. Then

Iu(X)l < C(1 + log'/ 2 p)1lul1,/2, ,

wtth C independent on p, u, and x.
Thts estimate cannot be asymptotically improved, i.e., there is a constant C such that

for each p > 2 there exists u,, c Pp(I) such that It!l, /I2,1 < C and lu,(-1)l > log'/ 2 p.
Proof By Lemma 6.1, we can consider instead the case v C H1(I'),

P

v(W) > 3 ak cos(P),
k~o

and V E I-, x = cos b. Then by the Cauchy-Schwarz inequality,

IvMabI _ E lak! Z IakI~ '(k + 1)1/21
p p 1)2

< (i a12 k + ) 1 /2 /2 + IvI,2 i( log 1 2 p).

ak, k, (k + 1) Qi/23(

k( k k=( k + 1 -

To show optimality of the estimate, it is enough to choose ak -- (k 4- 1) -  and x -1. 0
COROLLARY 6.3. We have

(6.5) IIuIIIto(;K) C(1 + log' /2 p) lfu !i,K, Vu E ',(g),
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i = 1,2 or 3, whcre C does not depend on u.
The following lemma extends the results of Lemma 6.1 showing that the mapping tp

preserves the subspace HI/)2

LEMMA 6.4. Let '1 be defined as in (6.1). Then u C- H, 2,,(1) if and only tf
t (u) H,,, (I*), and TI is a linear homeomorphism between H,,,(I) and t,,,1'2(I") .

Proof. Let v = T(u). It suffices to use Lemma 6.1 and to note that we have for the

additional term in the H,I, 2 norm that

I'x dx " JU(cos W)12 (- sin p) dW <' C IV J (W) I p
2f II

since
sinv /p < C I

(P W I > 1/C I , -_ W)_ 1 (o,7-).

THEOREM 6.5. Let ZP be the space

Z'= {u V',(I) u(-1) u(+) -O}.

Then for all p > 0,

(6.6) , iil1i,/,_> < C(1 + logp)l'uil . , Vu E Z,,

with a constant C independent on p and u. The bound (6.6) cannot be asymptotually
improved, that is, for every p, there exists a function v E Z such that ,,jvjI,/2.7/11v1l1/2.1

C log p, C > 0 independently of p.
Proof. From Lemmas 6.1 and 6.4, it suffices to consider instead the case

p

V(p) E ak cos kp, v(o) = 0.
k=()

We use the fact that v(O) = ak = 0 and estimate by the Cauchy-Schwarz inequality.

Iv(c)l dp 7:= 7r , ak(coskp - 1) ) 4

EI jakI(k + 1)) E~ -- - 1) d
k<1 ) Ink 1 k+[ d

C " j [ (cos kW - 1)2 d ( ,.
110i ,1/,.1 ,-- .f W(k + 1)

But

1)2 _ v &jCOS k 1)2
)(coskso- d(p = dVJ < C(1 + logk),
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so

-- d /. k + 1 < Clll, 2.c(1 -+ log2 p).

The bound of the integral f Pl)do when v(7r) = 0 follows by the substitution of p for

"- tp.

To show that the bound (6.6) is sharp, let

v(cp) 1: ak cos kw~
k=o

with

1/k, 2<k M }keven

ak= -03/k, M < k p
0, koddork=0.

where M =VIxP-] (integer part) and 0 = (1) is chosen so that Z=,,ak = 0, i.e.,

v(0) = v(ir) 0. Now expand v so that

v(W) = bmsinmW.

Since IIvzII/ 2  logp, it will suffice to show that

Oi1llI,(0,t Z mbI2 > 1 log 3  P.

We have

0, m even,
bm 2 E 2_ak, m odd

Ob(2)),k 
e en

Then bm= (2/ir)(bW) - /ibS)), where

2m 1 b 2) ) 2m 1
b m 2 -k 2Ik ' m m 2 -k 2k"

2<k<A! AI+±<k<p
k evcn k evett

The uncton z -4 2m is decreasing on the interval (2, m/v"3-), increasing on the intervals
The function x - , c i e(i in

(m/fv3, m) and (m, +oo), and positive on 2, m). Hence,

b,0) > C( _ 2m + 2m
n<</- (

2 - k k + m+<k<A, (M 2 - k2)k)
k even k even

. {,,Iv'- I 2m dZ al 2m dx 2m

f (i 2 , +2 )X (m2 - X2)X (M 2 - (m + 1)2)(m + 1)
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Using the fact that

dx 1 log X2  + C,

f (in 2 - X2 )X 2M2  m2 - X

we have by a simple computation that

b) _> C log m ,  C>0, 4<m<M.
m

Because W) < 0 for m < M we may concludu that

b, >C'logmi C >O, 4 < m<M
m

and thus

EZmb>CZ E o--___mn C log' p, C > 0,
M=1 

=;w

for all sufficiently large p. 0
The next theorem gives a different bound.
THEOREM 6.6. Let Zp be as in Theorem 6.5. Then for all p > 0,

t)I 12 II I2 J 12

2II/<,- 1/2 + C(1 + logp)l-lj! (1).

Proof. It is sufficient to bound the additional term in the Ho/2 norm. We have

1 V2(t) 1-1/p 2 
Vv2(t) dt " dt + J v(t)

-1 1-1/p 2  
-1

By Markov's inequality, cf., [19],

!Iv II L (!) -OPllllL(,),

so lv(t)I < C(1 - t)p2I1vIlL-{() and we obtain

v T t)dt < CJvII(,)2 (1 -- t)p 4 dt + _-tdt
1 -t L (1

-[/p 2

<C + 2log 2p) IIvlIL(!).

12

The analogous bound on f ( dt follows by substitution. 0
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FIG. 7.1. Notation scheme for the triangle

y C

7Y2C

P2  P3

T

72 731

A =(0,0) 7 ' P, B =(1,0)

7. Polynomial Extensions from the Boundary. Let K = T or K = Q- If

f E H'1 2(oK), then there exists an extension F E H'(K) so that f = F on 9K and

IIFIII,K <_ Cllfli,/ 2,oK.

The main result of this section is that if f is a polynomial of degree p on all sides of K,
then F can be chosen to be in 79 i = 1,2 if K is a triangle 3r a Square, respectively. This

extends previous results from Babuika and Suri [4].
Let us consider the triangle T = ABC as shown in Fig. 7.1. We denote

7, = -t' U -Y' = AP, U p, B = AB,

"/2 = 72 U 7 =AP2 U P 2 C = ,

73 =13 U-,  = BP uP C = BC.

Let f E 7p(-y,). Then we define

(7.1)A. Fj~f'(xTy) 0 4i f f(t) dt.
(7.2, f

The value of F, at a point (X,y) E T depends only on the values f along the segment

Q,Q2, Q, = (x - ,), Q2 = (T + ,). We prove now the following lemma.

LEMMA 7.1. Let f E Pp(-yi) and Flfl(x,y) be defined by (7.1). Then

(7.2) Fj'I(z,y) E Pp'(T),
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(7.3) F}1 (x,0) = f(x)
(7.4) 1F"I IF 1,T . :5 ClIIll/2,'r1

(7.5) 11F'Ijk,4, _ CfK 0 < k < 1,

(7.6) I1FI"'11fk,. < CIff1k,-, 0 < k < 1,

(7.7) IIFIkllkk-, < C1fhf1,-,,, 0 < k < 1,
(7.8) IFK'1k - _ f 0 _< I _ 1,

where the constant C is independent of p and f.
Proof. It is immediate that (7.3) holds. Let f(x) = x" with 0 < n < p integer. Then

F(x, y) v/3f tn dt = (X + -+I_( _ ),

f 2y(n + 1) 7 +- J
_ 3 [( + (zP 

Y

2 y(n + 1) [ V3T ±vZ)P-3 a~
n + 1) P(x,y) E P,

Hence (7.2) holds.
To prove (7.4) we first extend f to a function defined on the entire x-axis R so that [18)

Ilfll,/2,R <  cIJfll12,-Y ,

where we have used the same notation f to denote the extended function as well. Then by
(7.1), F,(x,y) is well defined on the entire half plane fl = {(z,y) I y > 0}. For (x,y) E Q
we have

+OV

(7.9) FI(x,y)= J f(t)H(x - t,y) dt = (f , (.,y))(x)

where

(7.10) H(X,Y)= 2V - : <  3
0 otherwise.

Let §( ) represent the Fourier transform of the function g(x) in the x direction. Then by

(7.9)

(7.11) pi(,y) = f( )( ,y)

where

1 V f ei 1 sin( y/vr3)(7.12) HY) = f e' - dz = --
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Let = {(,y)10 < y < 2} and calculate the H'(Q) norm of FI(x,y). By Parseval's equality,
we have using (7.11)

+ f I =( )12 1 H(,)12 d dy + J lf( )I2IH( ,Y)12 d dy.fl fl

Now letting z = y,/v J we obtain by (7.12),

1 I sin2 zdz CIi/( y~l2 dy - --- z2 (~l -!1+"

Hence

+o0

(7.13) Jf(C)lH( ,y)~d dy _ C J !{I If ( ) d )1 4 S CI1f1,/ 2,,_ cIIfR1/2,.
S)! -00

Also

fy = (cosz sinzv(, Y)= -L 2 )

which is bounded at z 0. Hence

1 cos z sinz 2 C

and

2

f 0-ft(,Y)r2 dy < Cj l

so that

(7.14) J j()I 2 HYVj-d dy :! C J -00~ )~d IfII,-tl'
i:/ -00

The third term can be bounded analogously. Using (7.13)-(7.14),(7.4) follows. Inequalities
(7.7) and (7.8) follow immediately for k = 0, k = 1 and hence by an interpolation argument
(see [61), they hold for all 0 < k < 1.

We prove now (7.5). Let the variable x be used to represent both the distance from A
along -f, and the distance from A along 72. Denoting

(7.15) G(x) =_1 f (t)dt

0
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it is readily seen that

(7.16) NF :I)1,, = JIG(x)lk,, I - (0, 1/2).

Using (9.9.1) of [12], p. 244 we obtain

(7.17) IIG (x)llojj _< C lIIofl. .

Further, integrating (7.15) by parts we have

XG(x) = f (x) - tf t ) 'dt
U

and hence

G'(X) = + f tf'() dt - -i f (z - t)f'(t) dt + -f f'(t) dt.
Ii U U

Using (9.9.5) of (12], p. 245 with r = 2 we obtain

X2f(X - tW'(t) dt <C11f'l,,,tx

and by (9.9.1) of [12] p. 244 we obtain

'(t) dt :5 C1lf'1l0,r.
U OI,!

Hence

(7.18) IIG'(x)IIo,, <_ Cllf'jui.

Combining (7.17) and (7.18) we obtain (7.5) for k = 0 and k = 1 and hence by the
interpolation argument (7.5) holds for all 0 < k < 1. The inequality (7.6) is essentially
the same as (7.5) and Lemma 7.1 is completely proven. 0

Let now f = f, E JP',(-y), i = 1,2,3. Then we denote by F.M (X,y) the polynomial
extension of f, into T, defined for i = 1 by (7.1) and for i = 2,3 by (7.1) after properly
rotating the coordinates. Obviously Lemma 7.1 is applicable for i = 1,2,3 when properly
interpreted through the rotation of the coordinates.

Let -y and '2 be the two sides of T (see Fig. 7.1) with the common vertex A. In the
sequel, we will use norms of the form 11" IIk,-,u-,, defined by ull,, = III, + Hull'
for k < 1/2 and for u continuous, k > 1/2 and

2 - ~ IIUJI2 + j (u(t)- ,2(t)) 2 A11U1 1, , , 2 Il 10 1/l, , + dt

0
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where u, is the restriction of u to yi,i = 1,2 and t represents the distance from A along -Y,
or 72. These definitions may be extended to the case of different sides of T in an obvious
way. The norm 11 ,1112/2,0 can be defined analogously.

We now prove
LEMMA 7.2. Let T be the triangle as in Fig. 7.1 and f be continuous and such that

f.= f P,(-yi), i 1,2 where by f we denote the restriction on f on ti. Then there

ezists F, (E Pp(-,), i= 1,2 such that

(7.19) U = Fj'1 l + F((] E P'(T),

(7.20) U=fi on -y, i= 1,2,
(7.21) 1JU 111,T <_-lijfjl,/2, ,-yjU ,

(7.22) II ,ilk,-, _< {Ifjjkru 2 , i = 1,2, 0 < k < 1,
2

(7.23) ii",2lk,-y < C(JIf, k, + E lif lfoJ), 0 < k < 1

/ 2

where C is constant independent of p and f.
Proof. Let i EPp(y). Then as in Lemma 7.1 we define

G,(x) = f Pj.(t) dt i=1, 2.
U

Condition (7.20) will be satisfied if

1x

(7.25) 1D(x) + G,(X) = t2(X) +_1 f 'P,(t)dt = f2(X)
X0

hold for all x E I = (0, 1). Since f, E Pp(I) it is easy to see that -t, E Pp(I) satisfying (7.25)
exist. k, are uniquely determined up to an additive constant i = 1,2. We now define

(6 ,() = ",(z) + 2 (X), t()1.=_( 2)- (),
(7.26) hI(x) = f, (x) + f2(z), h 2(X) = f,(X) - f2(2)

we see that h, G H'/ 2(1),h 2 E .4H'/ 2(I), and A,11h21,/2,, <_ 11f, 11/2.,U-,, where we define

h 112 1121 h(t., 1
l /2,l 1/ 2, + f dt
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and

.H'/12(I) = {u G H'12(1) 1 AIU11, 2,1 < +oo}.

Note that the space ..H' /2(I) is obtained by interpolation of L2(I) and the space

.AH'(I) = {u E H'(I) I u(O) = o}

as .H)I 2(I) [L 2 (I), .. H'(I)]11 2 . By (7.25) we have

(7.27) TI,,(x) + f *,(t)dt = hi(z),

0(7.28) 11(xT) - -]'1(t i

Here T1 (z) is unique, '1'(O) = h'(0), while ' 2(x) is unique up to the additive constant K.
We first analyze (7.27). By differentiation we obtain

x

Using (7.27) we obtain

(7.29) V', + 2- = h, + -.
x x

The homogeneous solution of (7.29) is lI/ 2 . A particular solution can be found by using the
method of variation of constants. Hence, substituting TlI(x) = 2) into (7.29) we obtain

T'(x) = h'X2 + ,',X

from which

x x

0 u

Integrating by parts we obtain

(7.30) %I,(x) = h,(x) - - th1(t)dt.

the unique solution of (7.27). We show now that

(7.31) 11'1,fl. - Cllh JI,, 0 < k < 1.
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Let

()--- f th,(t)dt = -Jfx -t)ht(t)dt + x h(t)dt.

Then

F(x) G(x)
X2  .2

where /
G(x) = (X- t)h(t) dt, Q(-r)= f 1h,(t)dA.

o 0

Using (9.9.4) of (12], p. 245 with r = 2 and (9.9.1) of [121,p. 244 we obtain

!IF(x )/X2110,r < IIG(x,)/x 2110', + IIQjot, <_ C(h, lll,,

which yields (7.31) for k = 0. Next, differentiating (7.30) and integrating by parts we obtain

X h, 1 I t X w2 1h 1 (t) dt-- h - , 1, -t.T h f2 h, (t) A t2h,(t)dt"

0 0

Let
X X ,X X

F(x) = f t 2h'(t) d = f(X - t)2 h'(t) d - x 2f h'(t)d + 2. fth't(t) dA.
0 0 0 u

We have then

F(x)- Q() + (),
X3 X3

where

G(x) = (. - t)2 h',(t)dt, Q(x) = - h .

0 U

and

R(x) = 2

This gives

IIF(z)/II1,,, IIG( )/xIll,., + IIQ(,)IIu r 4- IR(.)l,,,,.
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The first two terms can be bounded once more by Cflh'1 jJ0,, using (9.9.4) of [12], p. 245 with
r = 3 and (9.9.1), p.2,14. Moreover,

2 (_ x,
R(x) = (- (x -t)h'(t)dt + x h'(t)dt

0 0

so that 11Rj,, can also be bounded by IIh',jj,,j. This yields (7.31) for k = 1. By the
interpolation argument (see [121) we obtain immediately (7.31). Let us consider now (7.28).
Differentiating it and using once more (7.28) we obtain

(7.32) 411 = hl + h2

2z x

Integrating we obtain

r h2 (t)
(7.33) *2(X) = h 2 (X) - f t dt,

t

which is the solution of (7.28) with 412(1) = h2(1). We wish to show now that

(7.34) 11 2 ,lk , < C..jIjh 2 Ifk., 0 < k < 1.

Using (7.33) and (9.9.9) from (121, p. 245 with a = 0 we obtain

11*211,. S< Cjjh211o,.,.

Since h2(0) - 0, (7.32) yields

2 = h2 +_ h2(t)dt
(I

and by (9.9.1) of 112], p. 244 we obtain

11*2111,1, :S C.-11h21I,.,.

An interpolation argument leads immediately to (7.34). Hence we have constructed solutions
of (7.27),(7.28) such that (7.31) and (7.34) hold. We note that for k = 1/2, we have from
(7.34) 11*2 111,/2 ,1 ! C.4Iih211,/2,1 and .41h2111/2,[ cannot be replaced by II11h21/2,1. Coming back
to '(7.26), using k = 1/2 we see that for i = 1, 2,

and applying Lemma 7.1 we obtain immediately (7.21) and also (7.22). Returning to (7.27),
(7.28) we see that with P = (1/2, 1),

11*.11k,,. _< C (jjh, j --+ 11h, ll,,3), 41,2.
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Hence also

~I'Ik.. C (+z~,*±
which immediately leads to (7.23), (7.24). 0

The following lemma is taken from [5].

LEMMA 7.3. Let T be the triangle as before, f be continuous on OT, f2 = = 0 and
f, C Pp(7 ). Then there exists a polynomial v e P,'(T) such that

IVII,T :_<CllfIl,y,,, v = fi on 7,, v = 0 on -2, 3,

where C is a constant independent of f and p.
THIEOREM 7.4. Let T be the equilateral triangle shown in Fig. 7.1. f is continuous on

8T and f, = f; E P(-,), i = 1,2,3. Then there exists U E P (t) such that U = f on oT
and

JIUjI,,T: - Cllfll,12.aT

where the constant C is independent of p and f.
Proof. First we prove the theorem for the case when f = 0 on 72 and -t, and hence

with f, = fiJ, we have 011f,1ll1/2,n, _ II1/2,aT. By Lemma 7.2 we construct ',F 2 and

U, = F,"'1 + F, 1 . Then U1 E 7p(T), U = f, on -t, i = 1,2 and

(7.35) IIU, II,,T < C jlf jj, ll ,/,. U.t < C ljfjl,/2,aT

Denote by g3 the trace of U, on 73. Then we have

01l11/2,-,, - Cjlflijt12,aT

by (7.35) and the trace theorem. Because of (7.24), 114)2111,,_c < CIIflI/2,aT and hence using

Lemma 7.1 we have also

(7.36) IIg113 ,,,c -- ClIfIlh/ 2,8T

Let now analogously as before

U2 = F F,"l +

so that

U 2 C P,'(T), U 2 = g93 on, , U 2 = 0 on 7,

and

(7.37) !IU2 IliT Co1g3 111/2,.-,, C((f(l1 ,,o1 '.
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Denote by gill the trace of U2 on -y2. Then g2'l(A) = gf'(C) = 0. Because of (7.36), applying
Lemma 7.1 and Lemma i.2 analogously as before we conciude that

IIg~''H, ~ C (ljgjjl,. 3 + 1g:1 11/2.1) , C fI /2I. .

Now applying Lemma 7.3, there is U3 E PG (T) such that

(7.38) 11IU3111,, < C 1192' 11 ,,, < C II f 1 1, aTo

and

U- = gill on -t2, U3 = 0on 1 ,7 .

Let now

V = UI -U 2 + U 3 -

Then it is easy to see that V G PP'(T), V f on 7,, V = 0 on 7fY3 and because of (7.35),
(7.37) and (7.38) we obtain

JIVII,,T _CjjfjI,/2,aT

which concludes the argumenit.

Secondly, now we will address the general case. By Lemma 7.2 we construct 11, 2 and
U, = F( ' + F[" ' . Then U, C P(T), U, = fj on ,u = 1,2 and

IIU, IIT <_ CIfjI,/2.-,-, 2  < CjfIIl,/2,aT.

Denote by g:, the trace of U on 73' and g3 4 g3 - f3 on -y.,. Then

01193,11 CIjIl, aTo

and hence by the first part of the proof, there exists V E P,(T), V = g3 on -y3, V = 0 on

1 = 1,2, HVIIIT <_ 011:3111/ 2 ,-,,. Hence takitag U - U, - ,' , :.A.in

JJUIJ,.T :S CJJfJIi 2, 7'

and U f on OT. This concludes the proof. 0
Let S = {(xy) I IJz < 1, y < 1} be a square and 7, its sides as shown in Fig. 7.2.
THEOREM 7.5. Let S be the square shown in Fig. 7.2 and f be continuous on aS and

such that f = f1-y, E Pp(-y,), i 1,...,4. Then there exists U E P,2(S) such that U = f on

i9S and

IUlli,.s !S CIlfIli 2,as

where the constant C is independent of p and f.
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FIG. 7.2. Notation scheme for the square

V
F

D F C

1 
73

G 74 S 72

7t

A H B

Proof. Let T be triangle shown in Fig. 7.1 and Q G{((,ri)I((,r) e To < 3V3 be the8

trapezoid shown in Fig 7.3. The mapping

1 3z 5 3 0(2:,) (,r/, - +--(-y±-), ,7=(1+y) 16
2 16 3 1

maps S onto Q. The mapping is obviously one-to-one, smooth, the Jacobian and its inverse
are bounded, and the mapping is linear on OS. If U E 'P,(T) then

7) a., j '77 = U(Z,y) E P 2(S).
U<k+j<p

Because the used mapping is smooth, it preserves all norms under consideration. By j
we denote the function on 8Q obtained by transformation of f and by fA we denote the
restriction of f on j,. First we construct the extension of f, as in Lemma 7.1. Hence we
can replace f by gt 'l where gt'l = 0 on one side of S and I1g['1r12,as < Cf 11 1/2,is. We can
assume that we achieved, say, g1] = 0 which leads to the case 4, = 0. Extending j1,1l by zero
we construct as in Lemma 7.2 the function vi =g[" on '1, iv = 0 on j,, and

IIlli,T <_ Ilflt/2,as.

Hence we can replace f by g(21, g(21 = 0 on two neighboring sides of S say 72, 'Y3 and
Ilgt'11,/S _ CIIfI,,2,as. Repeating once more the construction using Lemmas 7.2 and 7.1

we replace f by g 31 so that g(3I = 0, say once more on '2 and -3, and

_<g' If If2,-ylU,4 ! CjfllI,as, lgf3] ll,,., 5 ClIfiIi, 2,.s, _<g11lAo C 1fjlf /2,S.
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FIG. 7.3. Notation scheme for the trapezoid

D Fc~

G Q

A Ht

Repeating once more the process and using Lemmas 7.1 and 7.2 we reduce our original
problem to the extension problem on S when Ijg,111,1/2,aS _< C1ffll,/ 2 .5s and ig<'ii,.,, _
CVIfll 2,as. It is now easy to construct v2 E p,(S) so that v2 = gl on iOS and

-I

t=i

which leads immediately to the desired result. 0

Theorem 7.5 is concerned with the space 7,(S). Theorem 7.5 does not hold for P,(S),
but there is a weaker statement easily available.

THEOREM 7.6. Let the assumptions of Theorem 7.5 hold. Then there ezists U E P(S)
such that U = f on oS and

IIUI,,s S Cpjf 112,as

Proof By Schmidt's inequality [13], 11If,1 1, < Cp 211 fII,, and by interpolation,

Itfl', -< Cpilfi,/.2 ,as.

Let us define

U1  f(Z)( 2 Y)

and analogously U,, i = 2,3,4. Then V = ELI U, is continuous on OS and V - f is linear
on every -,. Since 1lU, 11,s < C1i 11 we have

JIlV1 .s !S Cpjjf1112,aS3
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Further with 1 = Vj, we also have

if - V ,, -7 CpIIf1i,/2.as.

Let U be the bilinear function such that U = f - V on 9S. Then also IJUfl _ CpIIf11,2;).;,
and U = V + U is the desired extension. 0

Now let us turn to extensions where only some boundary values are given.

THEORE:.M 7.7. Let T be equilateral triangle, -7i one of its sides and v, the opposite

verte>.,\Let f, E lP'(). Then there ezists f E PO(T) such that f = f, ony, f(v,) = 0, and

\\' IlflI, < CIlfIj/2,-,,.

Proof. By Lemma 7.1. there is F, E P,'(T) such that F = f on 7t,

1II ,II,. '5 C JJf, 1l, 2,,,i IF ,(v,)l _< C llj , ll,/2,-,.

It suffices to put F = f, - /F(vl)w, where w is the linear function such that w(vi) = 1 and
w =0on- 1 . 0

Here is a similar theorem for the square.
THEOREM 7.8. Let S be square with sides -, to -y., and fi E 7p(-y). Then there exists

f P P (S) (resp. 7P (S)) such that f = f, on -f, f = 0 on the opposite side 73, and

iIl,,s < C lf, II ,.,,, ( resp. IflI,.s CpIfIf 1,/2-y,)

with C independent on f and p.
Proof As in the proof of Theorem 7.5, transform S to a trapezoid of Fig. 7.3, and use

Lemma 7.1 to obtain function g E P2(S) such that g = f, on 7, and

119111,.S _ clII11,-l,.

If follows immediately from the construction (7.1) that

1101',, <S CHAOl, ,.

Let S be as in Fig. 7.2, i.e., -yj characterized by y = -1, X E [-i,+Ij and 73 by y = 1,

X [-1, +11. Let v(x,y) = g(x)(y + 1). Then v = 0 on 7,, v = g on -y3, and

1101',s _< ClIIll,.

Then f = g - v is the desired extension and it holds that

11g - VI ,s <_ 1191l, s + lvii I,s _ l! , C IIf, 11,/2,.

The second case follows from the first one using Theorem 7.6. 0

Our last theorem is concerned with the extreme cast of extending a function from a

vertex onto a square.
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THEOREM 7.9. Let S be square with sides y, to -y, and and A its vertex adjacent to 7,

and -,. Then there ezists a constant C such that for all p > 1, there is a f -nction v E 'P,(S)
such that v(A) = 1, v = 0 on the two sides 72 and -I which are opposite to the vertex A,
and

Ilvlt.s < C(1 + logp)-' / 2.

Proof. It suffices to prove the theorem only for all sufficiently large p. Mapping the
function from the second part of Theorem 6.2 onto the sides -, and y, so that the point -1
is mapped to the vertex A, and extending the function by reflection also on 72 and 7., we
get a function u on 8S such that

lull I/2,os <_ C(1 + logp)- '1 /2 , u(A) = 1.

Note that jju1, 1 / 2 .0Es = ,=t ul,1 /2,,, (up to equivalence of norms) by symmetry. The
function u is not a polynomial, but its restriction to each side is a polynomial function. By
Theorem 7.5, there is an extension of u onto S such that u E P 2 and lIIul,,s _ Cllulli,/.as.
Let we 7E ' such that w(A) = 1 and w = 0 on 72 and 73, and put v = wu. Then

IlvlIzS < CIlullis < C(1 + logp) - '1 / 2, v(A) 1,

and

V 1 C P'2(p+,)"
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

" To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I, Babuska, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.


